Reference ZrH Reactor

Even as the SNAP-8 Development Reactor was undergoing tests, the mission for the SNAP-8 system was being changed. This would have major consequences for the design of the reactor, its power conversion system, and what missions it would be used in. These changes would be so extensive that the SNAP-8 reactor name would be completely dropped, and the reactor would be split into four concepts.

The first concept was the Space Power Facility – Plumbrook (SPT) reactor, which would be used to test shielding and other components at NASA’s Plum Brook Research Center outside Cleveland, OH, and could also be used for space missions if needed. The smallest of the designs (at 300 kWt), it was designed to avoid many of the problems associated with the S8ER and S8DR; however, funding was cut before the reactor could be built. In fact, it was cut so early that details on the design are very difficult to find.

The second reactor, the Reactor Core Test, was very similar to the SPF reactor, but it was the same power output as the nominal “full power” reactor, at 600 kWt. Both of these designs increased the number of control drums to eight, and were designed to be used with a traditional shadow shield. Neither of them were developed to any great extent, much less built.

A third design, the 5 kWe Thermoelectric Reactor, was a space system, meant to take many of the lessons from the SNAP-8 program and apply them to a medium-power system which would apply both the lessons of the SNAP-8 ER and DR as well as the SNAP-10A’s experience with thermoelectric power conversion systems to a reactor between the SNAP-10B and Reference Zirconium Hydride reactor in power output.

The final design, the Reference Zirconium Hydride Reactor (ZrHR), was extensively developed, even if geometry-specific testing was never conducted. This was the most direct replacement for the SNAP-8 reactor, and the last of the major U-ZrH fueled space reactors in the SNAP program. Rather than powering a nuclear electric spacecraft, however, this design was meant to power space stations.

The U-ZrH Reactor: Power for America’s Latest and Greatest Space Stations.

ZrHR Cutaway Drawing
Cutaway drawing, Image DOE

The Reference ZrH Reactor was begun in 1968, while the S8DR was still under construction. Because of this increased focus on having a crewed space station configuration, and the shielding requirement changes, some redesign of the reactor core was needed. The axial shield would change the reactivity of the core, and the control drums would no longer be able to effectively expose portions of the core to the vacuum of space to get rid of excess reactivity. Because of this, the number of fuel elements in the core were increased from 211 to 295. Another change was that rather than the even spacing of fuel elements used in the S8DR, the fuel elements were spaced in such a way that the amount of coolant around each fuel element was proportional to the amount of power produced by each fuel element. This means that the fuel elements on the interior of the core were wider spaced than the fuel elements around the periphery. This made it far more unlikely that local hot spots will develop which could lead to fuel element failures, but it also meant that the flow of coolant through the reactor core would need to be far more thoroughly studied than was done on the SNAP 8 reactor design. These thermohydrodynamic studies would be a major focus of the ZrHR program.

Reference Design Xsec and Elevtion

Another change was in the control drum configuration, as well as the need to provide coolant to the drums. This was because the drums were now not only fully enclosed solid cylinders, but were surrounded by a layer of molten lead gamma shielding. Each drum would be a solid cylinder in overall cross section; the main body was beryllium, but a crescent of europium alloy was used as a neutron poison (this is one of the more popular alternatives to boron for control mechanisms that operate in a high temperature environment) to absorb neutrons when this portion of the control drum was turned toward the core. These drums would be placed in dry wells, with NaK coolant flowing around them from the spacecraft (bottom) end before entering the upper reactor core plenum to flow through the core itself. The bearings would be identical to those used on the SNAP-8 Development Reactor, and minimal modifications would be needed for the drum motion control and position sensing apparatus. Fixed cylindrical beryllium reflectors, one small one along the interior radius of the control drums and a larger one along the outside of the drums, filled the gaps left by the control drums in this annular reflector structure. These, too, would be kept cool by the NaK coolant flowing around them.

Surrounding this would be an axial gamma shield, with the preferred material being molten lead encased in stainless steel – but tungsten was also considered as an alternative. Why the lead was kept molten is still a mystery to me, but my best guess is that this was due to the thermal conditions of the axial shield, which would have forced the lead to remain above its melting point. This shield would have made it possible to maneuver near the space station without having to remain in the shadow of the directional shield – although obviously dose rates would still be higher than being aboard the station itself.

TE Layout diagram

Another interesting thing about the shielding is that the shadow shield was divided in two, in order to balance thermal transfer and radiation protection for the power conversion system, and also to maximize the effectiveness of the shadow shields. Most designs used a 4 pi shield design, which is basically a frustrum completely surrounding the reactor core with the wide end pointing at the spacecraft. The primary coolant loops wrapped around this structure before entering the thermoelectric conversion units. After this, there’s a small “galley” where the power conversion system is mounted, followed by a slightly larger shadow shield, with the heat rejection system feed loops running across the outside as well. Finally, the radiator – usually cylindrical or conical – completed the main body of the power system. The base of the radiator would meet up with the mounting hardware for attachment to the spacecraft, although the majority of the structural load was an internal spar running from the core all the way to the spacecraft.

While the option for using a pure shadow shield concept was always kept on the table, the complications in docking with a nuclear powered space station which has an unshielded nuclear reactor at one end of the structure were significant. Because of this, the ZrHR was designed with full shielding around the entire core, with supplementary shadow shields between the reactor itself and the power conversion system, and also a second shadow shield after the power conversion system. These shadow shields could be increased to so-called 4-pi shields for more complete shielding area, assuming the mission mass budget allowed, but as a general rule the shielding used was a combination of the liquid lead gamma shield and the combined shadow shield configuration. These shields would change to a fairly large extent depending on the mission that the ZrHR would be used on.

Radiator Design Baseline

Another thing that was highly variable was the radiator configuration. Some designs had a radiator that was fixed in relation to the reactor, even if it was extended on a boom (as was the case of the Saturn V Orbital Workshop, later known as Skylab). Others would telescope out, as was the case for the later Modular Space Station (much later this became the International Space Station). The last option was for the radiators to be hinged, with flexible joints that the NaK coolant would flow through (this was the configuration for the lunar surface mission), and those joints took a lot of careful study, design, and material testing to verify that they would be reliable, seal properly, and not cause too many engineering compromises. We’ll look at the challenges of designing a radiator in the future, when we look at heat rejection systems (at this point, possibly next summer), but suffice to say that designing and executing a hinged radiator is a significant challenge for engineers, especially with a material at hot, and as reactive, as liquid NaK.

The ZrHR was continually being updated, since there was no reason to freeze the majority of the design components (although the fuel element spacing and fin configuration in the core may have indeed been frozen to allow for more detailed hydrodynamic predictability), until the program’s cancellation in 1973. Because of this, many design details were still in flux, and the final reactor configuration wasn’t ever set in stone. Additional modifications for surface use for a crewed lunar base would have required tweaking, as well, so there is a lot of variety in the final configurations.

The Stations: Orbital Missions for SNAP-8 Reactors

OWS with two CSMs, 1966.PNG
Frontispiece for nuclear-powered Saturn V Orbital Workstation (which flew as Skylab), image NASA 

At the time of the redesign, three space stations were being proposed for the near future: the first, the Manned Orbiting Research Laboratory, (later changed to the Manned Orbiting Laboratory, or MOL), was a US Air Force project as part of the Blue Gemini program. Primarily designed as a surveillance platform, advances in photorecoinnasance satellites made this program redundant after just a single flight of an uncrewed, upgraded Gemini capsule.

The second was part of the Apollo Applications Program. Originally known as the Saturn V Orbital Workshop (OWS), this later evolved into Skylab. Three crews visited this space station after it was launched on the final Saturn V, and despite huge amounts of work needed to repair damage caused during a particularly difficult launch, the scientific return in everything from anatomy and physiology to meteorology to heliophysics (the study of the Sun and other stars) fundamentally changed our understanding of the solar system around us, and the challenges associated with continuing our expansion into space.

The final space station that was then under development was the Modular Space Station, which would in the late 1980s and early 1990s evolve into Space Station Freedom, and at the start of its construction in 1998 (exactly 20 years ago as of the day I’m writing this, actually) was known as the International Space Station. While many of the concepts from the MSS were carried over through its later iterations, this design was also quite different from the ISS that we know today.

TE Detail Flow

Because of this change in mission, quite a few of the subsystems for the power plant were changed extensively, starting just outside the reactor core and extending through to shielding, power conversion systems, and heat rejection systems. The power conversion system was changed to four parallel thermoelectric convertors, a more advanced setup than the SNAP-10 series of reactors used. These allowed for partial outages of the PCS without complete power loss. The heat rejection system was one of the most mission-dependent structures, so would vary in size and configuration quite a bit from mission to mission. It, too, would use NaK-78 as the working fluid, and in general would be 1200 (on the OWS) to 1400 (reference mission) sq. ft in surface area. We’ll look more at these concepts in later posts on power conversion and heat rejection systems, but these changes took up a great deal of the work that was done on the ZrHR program.

Radiation Shield Zones

One of the biggest reasons for this unusual shielding configuration was to allow a compromise between shielding mass and crew radiation dose. In this configuration, there would be three zones of radiation exposure: only shielded by the 4 pi shield during rendezvous and docking (a relatively short time period) called the rendezvous zone; a more significant shielding for the spacecraft but still slightly higher than fully shielded (because the spacecraft would be empty when docked the vast majority of the time) called the scatter shield zone; and the crewed portion of the space station itself, which would be the most shielded, called the primary shielded zone. With the 4 pi shield, the entire system would mass 24,450 pounds, of which 16,500 lbs was radiation shielding, leading to a crew dose of between 20 and 30 rem a year from the reactor.

The mission planning for the OWS was flexible in its launch configuration: it could have launched integral to the OWS on a Saturn V (although, considering the troubles that the Skylab launch actually had, I’m curious how well the system would have performed), or it could have been launched on a separate launcher and had an upper stage to attach it to the OWS. The two options proposed were either a Saturn 1B with a modified Apollo Service Module as a trans-stage, or a Titan IIIF with the Titan Trans-stage for on-orbit delivery (the Titan IIIC was considered unworkable due to mass restrictions).

Deorbit System Concept

After the 3-5 years of operational life, the reactor could be disposed of in two ways: either it would be deorbited into a deep ocean area (as with the SNAP-10A, although as we saw during the BES-5’s operational history this ended up not being considered a good option), or it could be boosted into a graveyard orbit. One consideration which is very different from the SNAP-10A is that the reactor would likely be intact due to the 4 pi shield, rather than burning up as the SNAP-10A would have, meaning that a terrestrial impact could lead to civilian population exposures to fission products, and also having highly enriched (although not quite bomb grade) uranium somewhere for someone to be able to relatively easily pick up. This made the deorbiting of the reactor a bit pickier in terms of location, and so an uncontrolled re-entry was not considered. The ideal was to leave it in a parking orbit of at least 400 nautical miles in altitude for a few hundred years to allow the fission products to completely decay away before de-orbiting the reactor over the ocean.

Nuclear Power for the Moon

Lunar configuration cutaway
Lunar landing configuration, image DOE

The final configuration that was examined for the Advanced ZrH Reactor was for the lunar base that was planned as a follow-on to the Apollo Program. While this never came to fruition, it was still studied carefully. Nuclear power on the Moon was nothing new: the SNAP-27 radioisotope thermoelectric generator had been used on every single Apollo surface mission as part of the Apollo Lunar Surface Experiment Package (ALSEP). However, these RTGs would not provide nearly enough power for a permanently crewed lunar base. As an additional complication, all of the power sources available would be severely taxed by the 24 day long, incredibly cold lunar night that the base would have to contend with. Only nuclear fission offered both the power and the heat needed for a permanently staffed lunar base, and the reactor that was considered the best option was the Advanced ZrH Reactor.

The configuration of this form of the reactor was very different. There are three options for a surface power plant: the reactor is offloaded from the lander and buried in the lunar regolith for shielding (which is how the Kilopower reactor is being planned for surface operations); an integral lander and power plant which is assembled in Earth (or lunar) orbit before landing, with a 4 pi shield configuration; finally an integrated lander and reactor with a deployable radiator which is activated once the reactor is on the surface of the moon, again with a 4 pi shield configuration. There are, of course, in-between options between the last two configurations, where part of the radiator is fixed and part deploys. The designers of the ZrHR decided to go with the second option as their best design option, due to the ability to check out the reactor before deployment to the lunar surface but also minimizing the amount of effort needed by the astronauts to prepare the reactor for power operations after landing. This makes sense because, while on-orbit assembly and checkout is a complex and difficult process, it’s still cheaper in terms of manpower to do this work in Earth orbit rather than a lunar EVA due to the value of every minute on the lunar surface. If additional heat rejection was required, a deployable radiator could be used, but this would require flexible joints for the NaK coolant, which would pose a significant materials and design challenge. A heat shield was used when the reactor wasn’t in operation to prevent exessive heat loss from the reactor. This eased startup transient issues, as well as ensuring that the NaK coolant remained liquid even during reactor shutdown (frozen working fluids are never good for a mechanical system, after all). The power conversion system was exactly the same configuration as would be used in the OWS configuration that we discussed earlier, with the upgraded, larger tubes rather than the smaller, more numerous ones (we’ll discuss the tradeoffs here in the power conversion system blog posts).

Surface configuration diagram

This power plant would end up providing a total of 35.5 kWe of conditioned (i.e. usable, reliable power) electricity out of the 962 kWt reactor core, with 22.9 kWe being delivered to the habitat itself, for at least 5 years. The overall power supply system, including radiator, shield, power conditioning unit, and the rest of the ancillary bits and pieces that make a nuclear reactor core into a fission power plant, ended up massing a total of 23,100 lbs, which is comfortably under the 29,475 lb weight limit of the lander design that was selected (unfortunately, finding information on that design is proving difficult). A total dose rate at a half mile for an unshielded astronaut would be 7.55 mrem/hr was considered sufficient for crew radiation safety (this is a small radiation dose compared to the lunar radiation environment, and the astronauts will spend much of their time in the much better shielded habitat.

Sadly, this power supply was not developed to a great extent (although I was unable to find the source document for this particular design: NAA-SR-12374, “Reactor Power Plants for Lunar Base Applications, Atomics International 1967), because the plans for the crewed lunar base were canceled before much work was done on this design. The plans were developed to the point that future lunar base plans would have a significant starting off point, but again the design was never frozen, so there was a lot of flexibility remaining in the design.

The End of the Line

Sadly, these plans never reached fruition. The U-ZrH Reactor had its budget cut by 75% in 1971, with cuts to alternate power conversion systems such as the use of thermionic power conversion (30%) and reactor safety (50%), and the advanced Brayton system (completely canceled) happening at the same time. NERVA, which we covered in a number of earlier posts, also had its funding slashed at the same time. This was due to a reorientation of funds away from many current programs, and instead focusing on the Space Shuttle and a modular space station, whose power requirements were higher than the U-ZrH Reactor would be able to offer.

At this point, the AEC shifted their funding philosophy, moving away from preparing specific designs for flight readiness and instead moving toward a long-term development strategy. In 1973 head of the AEC’s Space Nuclear Systems Division said that, given the lower funding levels that NASA was forced to work within, “…the missions which were likely to require large amounts of energy, now appear to be postponed until around 1990 or later.” This led to the cancellation of all nuclear reactor systems, and a shift in focus to radioisotope thermoelectric generators, which gave enough power for NASA and the DoD’s current mission priorities in a far simpler form.

Further Reading and Sources

Reference Zirconium Hydride Reactor

Overall Program

REFERENCE ZIRCONIUM HYDRIDE REACTOR 1969
https://www.osti.gov/servlets/purl/4719723

Fuel Element Development and Analysis

Nuclear Design and Analysis

ZIRCOIMIUM HYDRIDE REACTOR CONTROL REFLECTOR SYSTEMS SUMMARY REPORT 1972 https://www.osti.gov/servlets/purl/4374595

Power Conversion System Development

REFERENCE ZIRCONIUM HYDRIDE REACTOR THERMOELECTRIC SYSTEM 1969 https://www.osti.gov/servlets/purl/4004948

REACTOR – THERMOELECTRIC SYSTEM FOR NASA SPACE STATION 1969
https://www.osti.gov/servlets/purl/4773689

Component Design, Development, and Analysis

ZIRCONIUM HYDRIDE REACTOR CONTROL DRIVE ACTUATOR DEVELOPMENT SUMMARY REPORT 1973 https://www.osti.gov/servlets/purl/4474590

Progress Reports

Program Costs

Decommissioning and Safety